EnviroSystems, Inc. P.O. Box 778 Hampton, NH 03843-0778 603-926-3345

December 12, 2017

Mr. Aram Varjabedian Woodard & Curran Hull Water Pollution Control Facility 1111 Nantasket Avenue Hull, Massachusetts 02045

Dear Mr. Varjabedian:

Enclosed, please find three copies of our report presenting the results of a toxicity test completed using an effluent sample collected from the Hull, Massachusetts Water Pollution Control Facility during the November 2017 sampling period. Acute toxicity was evaluated using the inland silverside minnow, *Menidia beryllina*.

Please do not hesitate to call me or Lisa Bordonaro should you have any questions regarding the report.

Sincerely,

EnviroSystems, Incorporated

Kirk Cram

**Toxicology Laboratory Manager** 

Enclosure

WET Test Report Certification Report Number 29958-17-11 Three (3) copies + email

### WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

### Permittee Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| Executed on: |                                    |
|--------------|------------------------------------|
|              | Authorized Signature               |
|              | Print or Type Name                 |
|              | Hull Permanent Sewer Commission    |
|              | Print or Type the Permittee's Name |
|              | MA0101231                          |
|              | Type or Print the NPDES Permit No. |

### WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| Executed on: | December 12, 2017 | Lih | bray |  |
|--------------|-------------------|-----|------|--|
|              |                   |     |      |  |

1

Kirk Cram
Toxicology Laboratory Manager - EnviroSystems, Inc.

# TOXICOLOGICAL EVALUATION OF A TREATED MUNICIPAL EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: November 2017

### **Hull Water Pollution Control Facility**

Hull, Massachusetts
NPDES Permit Number MA0101231

### Prepared For:

Woodard & Curran
Hull Water Pollution Control Facility
1111 Nantasket Avenue
Hull, Massachusetts 02045

Prepared By:

EnviroSystems, Incorporated One Lafayette Road Hampton, New Hampshire 03842

November 2017 Reference Number: Hull29958-17-11

### **STUDY NUMBER 29958**

### **EXECUTIVE SUMMARY**

The following summarizes the results of an acute exposure bioassay completed during November 2017 in support of the NPDES biomonitoring requirements of the Hull, Massachusetts Water Pollution Control Facility, operated by Woodard & Curran. The 48 hour acute definitive assay was completed using the inland silverside minnow, *Menidia beryllina*.

*M. beryllina*, supplied by Aquatic Research Organisms, Inc. of Hampton, New Hampshire, were 11 days old at the start of the test. Dilution water was receiving water collected from Massachusetts Bay at a point away from the discharge. Samples were received under chain of custody in good order. All sample receipt, test conditions and control endpoints were within protocol specifications, except where otherwise noted.

The results presented in this report relate only to the samples described on the chain(s) of custody and sample receipt log(s), and are intended to be used only by the submitter. Results from the acute exposure assay and their relationship to permit limits are summarized in the following matrix.

### **Acute Toxicity Evaluation**

| Species                        | Exposure | LC-50 | A-NOEC | Permit Limit<br>(LC-50) | Effluent Meets<br>Permit Limit | Assay Meets<br>Protocol Limits |
|--------------------------------|----------|-------|--------|-------------------------|--------------------------------|--------------------------------|
| Menidia beryllina <sup>a</sup> | 48 Hours | >100% | 100%   | ≥ 100%                  | Yes                            | Yes                            |

### COMMENTS:

NC = Not Calculated.

<sup>a</sup> Only 9 minnows were added to replicates A and D of the receiving water control at assay initiation; therefore, 9 organisms were used at the start of the assay in these replicates for the data summary and statistical analysis. 11 minnows were added to replicates B of the 12.5% test concentration, and B and C of the 50% test concentration at assay initiation; therefore, 11 organisms were used from the start of the assay in these replicates in the data summary and statistical analysis.

# TOXICOLOGICAL EVALUATION OF A TREATED MUNICIPAL EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: November 2017

### **Hull Water Pollution Control Facility**

Hull, Massachusetts
NPDES Permit Number MA0101231

### 1.0 INTRODUCTION

This report presents the results of an acute toxicity test completed on a composite effluent sample collected from the Hull, Massachusetts Water Pollution Control Facility (Hull WPCF), operated by Woodard & Curran. Testing was based on programs and protocols developed by the US EPA (2002), with exceptions as noted by US EPA Region I (2012), and involved conducting a 48 hour static acute toxicity test with the inland silverside minnow, *Menidia beryllina*. Testing was performed at EnviroSystems, Incorporated (ESI), Hampton, New Hampshire in accordance with the provisions of TNI Standards (2009).

Acute toxicity tests involve preparing a series of concentrations by diluting effluent with control water. Groups of test animals are exposed to each effluent concentration and control for a specified period. In acute tests, mortality data for each concentration are used to calculate the median lethal concentration, or LC-50, defined as the effluent concentration that kills half of the test animals. Samples with high LC-50 values are less likely to cause significant environmental impacts. The no-effect concentration is also determined to provide information about the level of effluent that would have minimal acute effects in the environment. This Acute No Observed Effect Concentration (A-NOEC) is defined as the highest tested effluent concentration that causes no significant mortality.

### 2.0 MATERIALS AND METHODS

### 2.1 General Methods

Toxicological and analytical protocols used in this program follow procedures primarily designed to provide standard approaches for the evaluation of toxicological effects of discharges on aquatic organisms (US EPA 2002), and for the analysis of water samples (APHA 2012). See Section 4.0 for a list of references.

### 2.2 Test Species

When necessary, *M. beryllina* were acclimated to approximate test conditions prior to use in the assay. Test organisms were transferred to test chambers using an inverted glass pipet, minimizing the amount of water added to test solutions. Twenty control fish were weighed during the test to confirm loading rates. The loading rate was below the maximum 0.4 g/L recommended for assays conducted at 25°C. Fish weights and loading calculations are included in the data appendix. Fish were fed <24 hour old *Artemia* nauplii daily until test start.

### 2.3 Effluent, Receiving Water, and Laboratory Water

Effluent and receiving water collection information is provided in Table 1. Samples were received at 0-6°C as per 40 CFR §136.3 unless otherwise noted, stored at 4±2°C and warmed to 25±1°C prior to preparing test solutions. Effluent used in the *M. beryllina* assay was salinity adjusted to 25±2 ppt using artificial sea salts according to protocol (US EPA 2002). Laboratory water was collected from the Hampton/Seabrook Estuary. This water has been used to culture marine test organisms since 1981.

Total residual chlorine (TRC) was measured by amperometric titration (MDL  $0.02 \, \text{mg/L}$ ) in the effluent and diluent samples prior to use in the assays. Samples with  $\geq 0.02 \, \text{mg/L}$  TRC were dechlorinated using sodium thiosulfate (US EPA 2002) and a control treatment using laboratory water adjusted with the same amount of sodium thiosulfate as was used to dechlorinate the effluent was run concurrently with the assay.

If sample pH measured <6.0 SU or >9.0 SU, samples were adjusted using sodium hydroxide or hydrochloric acid, respectively, and a control treatment using laboratory water adjusted with the same amount of either compound as was used to modify sample pH was run concurrently with the assay. When applicable, data from sodium thiosulfate and/or pH adjusted laboratory control treatments can be found in Appendix A.

### 2.4 Acute Exposure Bioassay

The 48 hour static acute exposure bioassay was conducted at 25±1°C with a photoperiod of 16:8 hours light:dark. Test chambers were 250 mL glass beakers containing 200 mL test solution in each of 4 replicates with 10 organisms/replicate. Replicates were not randomized during testing; rather, organisms were added randomly at test initiation by replicate across test solutions in an alternating fashion (alternating allocation). Test concentrations for the assay were 100% (undiluted), 50%, 25%, 12.5%, and 6.25% effluent. Survival and dissolved oxygen were recorded daily in all replicates. Specific conductivity, salinity, temperature, and pH were measured daily in one replicate of each test treatment.

### 2.5 Data Analysis

When applicable, statistical analysis of acute exposure data was completed using CETIS™ v1.9.3.0, Comprehensive Environmental Toxicity Information System, software. The program computes acute exposure endpoints based on US EPA decision tree guidelines specified in individual test methods. If survival in the highest test concentration is >50%, the LC-50 is obtained by direct observation of the raw data. As needed, the A-NOEC is determined as the highest test concentration that caused no significant mortality.

### 2.6 Quality Control

As part of the laboratory quality control program, standard reference toxicant assays are completed on a regular basis for each test species. These results provide relative health and response data while allowing for comparison with historic data sets. See Table 2 for details.

### 3.0 RESULTS AND DISCUSSION

Results of the acute exposure bioassay completed using the inland silverside minnow are summarized in Table 3. Effluent and dilution water characteristics are presented in Table 4. US EPA Region I toxicity test summary sheets can be found after the tables. Support data, including copies of laboratory bench sheets, are included in Appendix A.

Minimum test acceptability criteria require ≥90% survival in the control concentrations. Achievement of these results indicates that healthy test organisms were used and that the dilution water had no significant adverse impact on the outcome of the assay. See the Executive Summary and Table 3 for test acceptability.

### 4.0 LITERATURE CITED

- 40 CFR §136.3. Code of Federal Regulations (CFR), Protection of the Environment (Title 40), Guidelines Establishing Test Procedures for the Analysis of Pollutants (Part 136), Identification of Test Procedures (sub-part 3), Table II-Required Containers, Preservation Techniques, and Holding Times.
- APHA. 2012. Standard Methods for the Examination of Water and Wastewater, 22<sup>nd</sup> Edition. Washington D.C.
- The NELAC Institute (TNI). 2009. Environmental Laboratory Sector, Volume 1: Management and Technical Requirements for Laboratories Performing Environmental Analysis (TNI Standard). EL-V1-2009.
- US EPA. 2002. *Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms*. Fifth Edition. EPA-821-R-02-012.
- US EPA Region I. 2012. *Marine Acute Toxicity Test Procedure and Protocol*. US EPA Region I Office, Boston, Massachusetts. July 2012.

TABLE 1. Summary of Sample Collection Information.
Hull WPCF Effluent Biomonitoring Program. November 2017.

|                       |      | Colle       | ction     | Recei    | pt   |                    |
|-----------------------|------|-------------|-----------|----------|------|--------------------|
| Sample<br>Description | Туре | Date        | Time      | Date     | Time | Arrival<br>Temp °C |
| Effluent              | Comp | 11/14-15/17 | 0800-0800 | 11/15/17 | 0838 | 5                  |
| Receiving Water       | Grab | 11/15/17    | 0600      | 11/15/17 | 0838 | 5                  |

TABLE 2. Summary of Reference Toxicant Data.

Hull WPCF Effluent Biomonitoring Program. November 2017.

| Date         | Eı            | ndpoint    | Value | Historic Mean/<br>Central Tendency | Acceptable<br>Range | Reference<br>Toxicant |
|--------------|---------------|------------|-------|------------------------------------|---------------------|-----------------------|
| M. beryllina | a<br>Survival | 48Hr LC-50 | 7.9   | 7.0                                | 5.5 - 8.6           | SDS (mg/L)            |

Means and Acceptable Ranges based on the most recent 20 reference toxicant assays.

TABLE 3. Summary of Acute Evaluation Results.
Hull WPCF Effluent Biomonitoring Program. November 2017.

| Percent Survival         |          |              |                    |        |                   |                      |                    |       |
|--------------------------|----------|--------------|--------------------|--------|-------------------|----------------------|--------------------|-------|
| Species                  | Exposure | Lab          | RW                 | 6.25%  | 12.5%             | 25%                  | 50%                | 100%  |
| M. beryllina             | 48 hours | 95%          | 91.9% <sup>a</sup> | 93.0%  | 100% <sup>b</sup> | 83.0%                | 95.2% <sup>b</sup> | 98.0% |
| LC-50 and A-NOEC Results |          |              |                    |        |                   |                      |                    |       |
| Species                  | Exposure | Spear<br>Kär |                    | Probit | 0                 | Direct<br>bservation |                    | NOEC  |
| M. beryllina             | 48 Hours | N            | C                  | NC     |                   | >100%                | 1                  | 00%   |

### **COMMENTS**:

RW = Receiving Water; used as the diluent.

NC = Not Calculated.

<sup>&</sup>lt;sup>a</sup> Only 9 minnows were added to replicates A and D of the receiving water control at assay initiation; therefore, 9 organisms were used at the start of the assay in these replicates for the data summary and statistical analysis. 11 minnows were added to replicates B of the 12.5% test concentration, and B and C of the 50% test concentration at assay initiation; therefore, 11 organisms were used from the start of the assay in these replicates in the data summary and statistical analysis.

TABLE 4. WET Support Chemistry Data.
Hull WPCF Effluent Biomonitoring Program. November 2017.

| PARAMETER                           | UNIT     | EFFLUENT | RECEIVING WATER |
|-------------------------------------|----------|----------|-----------------|
| Specific Conductivity - As Received | µmhos/cm | 17880    | 47740           |
| pH - As Received                    | SU       | 7.27     | 7.79            |
| Salinity - As Received              | ppt      | 11       | 31              |
| Total Residual Chlorine             | mg/L     | <0.02    | <0.02           |
| Total Solids                        | mg/L     | 12000    | 36000           |
| Total Suspended Solids              | mg/L     | 14       | 4.8             |
| Ammonia as N                        | mg/L     | 0.17     | <0.1            |
| Total Organic Carbon                | mg/L     | 4.7      | 2               |
|                                     |          |          |                 |
| Aluminum, total                     | mg/L     | 0.035    | 0.075           |
| Cadmium, total                      | mg/L     | <0.0005  | <0.0005         |
| Calcium, total                      | mg/L     | 162      | 363             |
| Chromium, total                     | mg/L     | <0.002   | <0.002          |
| Copper, total                       | mg/L     | 0.011    | 0.0011          |
| Lead, total                         | mg/L     | <0.0005  | <0.0005         |
| Magnesium, total                    | mg/L     | 365      | 1080            |
| Nickel, total                       | mg/L     | <0.002   | <0.002          |
| Zinc, total                         | mg/L     | 0.058    | 0.0026          |

### COMMENTS:

Additional water quality and support chemistry data are provided in Appendix A.

### **TOXICITY TEST SUMMARY SHEET**

| FACILITY NAME:              | Hull WPCF                                             | TEST START DATE:                      | 11/16/17                         |
|-----------------------------|-------------------------------------------------------|---------------------------------------|----------------------------------|
| NPDES PERMIT NO.:           | MA0101231                                             | TEST END DATE:                        | 11/18/17                         |
| TEST TYPE                   | TEST SPECIES                                          | SAMPLE TYPE                           | SAMPLE METHOD                    |
| X Acute                     | Pimephales promelas                                   | Prechlorinated                        | Grab                             |
| Chronic                     | Ceriodaphnia dubia                                    | Dechlorinated                         | X Composite                      |
| Modified Chronic            | Daphnia pulex                                         | Chlorine Spiked in                    | n LabFlow-thru                   |
| (Reporting Acute            | Americamysis bahia                                    | Chlorinated on Sit                    | te Other                         |
| Values)                     | Cyprinodon variegatu                                  | s Unchlorinated                       |                                  |
| 24 Hour Screen              | X Menidia beryllina                                   | X No Detectable Ch                    | lorine Upon Receipt              |
| _                           | Arbacia punctulata                                    | Dechlorinated at I                    |                                  |
| DILUTION WATER:             |                                                       |                                       |                                  |
|                             | ected at a point upstream of ceiving Water Name: Mass | or away from the discharge, free      | from toxicity or other sources   |
|                             | <del>-</del>                                          | ardness, to generally reflect the o   | characteristics of the receiving |
| water; Receiving Wa         |                                                       |                                       |                                  |
|                             |                                                       | Milli-Q or equivalent deionized w     | ater and reagent grade           |
| •                           | zed water combined with m                             | ineral water.                         |                                  |
|                             | xed with deionized water                              |                                       |                                  |
| Deionized water and         | hypersaline brine                                     |                                       |                                  |
| Other                       |                                                       |                                       |                                  |
| EFFLUENT SAMPLING           | <b>DATES</b> : 11/14-1                                | 5/17                                  |                                  |
| <b>EFFLUENT CONCENTS</b>    | RATIONS TESTED (%): 6                                 | 5.25; 12.5; 25; 50; 100               |                                  |
| Permit Limit Concentration  | on: <u>≥100</u> %                                     |                                       |                                  |
| Was the effluent salinity   | adjusted? Yes If                                      | yes, to what level?                   | <u>25</u> ppt                    |
| REFERENCE TOXICAN           | T TEST DATE: 11/28/17                                 | <u>7_</u> LC-50: <u>7.9</u> mg/L Sodi | um Dodecyl Sulfate               |
| PERMIT LIMITS AND TI        | EST RESULTS                                           |                                       |                                  |
| Test Acceptability Criteria | a                                                     |                                       |                                  |
| Mean Control Survival:      | 91.9 %                                                |                                       |                                  |
| LIMITS                      |                                                       | RESULTS                               |                                  |
| LC-50: ≥100 %               |                                                       | LC-50                                 | >100 %                           |
|                             |                                                       | Upper Limit:                          | - %                              |
| A-NOEC: - %                 |                                                       | Lower Limit:                          | - %                              |
|                             |                                                       | Method:                               | Direct Observation               |
| C-NOEC: - %                 |                                                       | A-NOEC:                               | 100 %                            |
| - /0                        |                                                       | C-NOEC:                               | <u>- 100</u> %<br>- %            |
|                             |                                                       | C-NOEC:                               |                                  |
| 10                          |                                                       |                                       |                                  |
| IC %                        |                                                       | IC                                    | <u> </u>                         |

### **APPENDIX A**

### **DATA SHEETS**

### **STATISTICAL SUPPORT**

| Contents                                                                   | Number of<br>Pages |
|----------------------------------------------------------------------------|--------------------|
| Methods Used in NPDES Permit Biomonitoring Testing                         | 1                  |
| Massachusetts DEP Accreditation Certification and Certified Parameter List | 3                  |
| M. beryllina Acute Bioassay Bench Sheet                                    | 2                  |
| M. beryllina Acute Survival Statistical Analysis                           | 3                  |
| Organism Wet Weights                                                       | 1                  |
| Organism Culture Data                                                      | 1                  |
| Preparation of Dilutions and Record of Meters Used                         | 1                  |
| Analytical Chemistry Support Data Summary Report                           | 1                  |
| Sample Receipt Record                                                      | 1                  |
| Chain of Custody                                                           | 1                  |
| Assay Review Checklist                                                     | 1                  |
| Total Appendix Pages                                                       | 16                 |

### METHODS USED IN NPDES PERMIT BIOMONITORING TESTING

| Parameter                     | Method                                                                    |
|-------------------------------|---------------------------------------------------------------------------|
| Acute Exposure Bioassays:     |                                                                           |
| Ceriodaphnia dubia            | EPA-821-R-02-012 2002.0                                                   |
| Daphnia pulex                 | EPA-821-R-02-012 2021.0                                                   |
| Pimephales promelas           | EPA-821-R-02-012 2000.0                                                   |
| Americamysis bahia            | EPA-821-R-02-012 2007.0                                                   |
| Menidia beryllina             | EPA-821-R-02-012 2006.0                                                   |
| Cyprinodon variegatus         | EPA-821-R-02-012 2004.0                                                   |
| Chronic Exposure Bioassays:   |                                                                           |
| Ceriodaphnia dubia            | EPA-821-R-02-013 1002.0                                                   |
| Pimephales promelas           | EPA-821-R-02-013 1000.0                                                   |
| Cyprinodon variegatus         | EPA-821-R-02-014 1004.0                                                   |
| Menidia beryllina             | EPA-821-R-02-014 1006.0                                                   |
| Arbacia punctulata            | EPA-821-R-02-014 1008.0                                                   |
| Champia parvula               | EPA-821-R-02-014 1009.0                                                   |
| Trace Metals:                 |                                                                           |
| Trace Metals                  | EPA 200.8/SW 6020, EPA 245.7                                              |
| Hardness                      | EPA SW846 3rd Ed. 6010                                                    |
| Wet Chemistries:              |                                                                           |
| Alkalinity                    | EPA 310.2                                                                 |
| Chlorine, Residual            | Standard Methods 22 <sup>nd</sup> Edition - Method 4500-CI D              |
| Total Organic Carbon          | Standard Methods 22 <sup>nd</sup> Edition - Method 5310 C                 |
| Specific Conductance          | Standard Methods 22 <sup>nd</sup> Edition - Method 2510 B                 |
| Nitrogen - Ammonia            | Standard Methods 22 <sup>nd</sup> Edition - Method 4500-NH <sub>3</sub> G |
| рН                            | Standard Methods 22 <sup>nd</sup> Edition - Method 4500-H+ B              |
| Solids, Total (TS)            | Standard Methods 22 <sup>nd</sup> Edition - Method 2540 B                 |
| Solids, Total Dissolved (TDS) | Standard Methods 22 <sup>nd</sup> Edition - Method 2540 C                 |
| Solids, Total Suspended (TSS) | Standard Methods 22 <sup>nd</sup> Edition - Method 2540 D                 |
| Dissolved Oxygen              | Standard Methods 22 <sup>nd</sup> Edition - Method 4500-O G               |

Please visit our web site at <a href="https://www.envirosystems.com">www.envirosystems.com</a> for a copy of our accreditations and state certifications.

## The Commonwealth of Massachusetts



## Department of Environmental Protection

Division of Environmental Analysis Senator William X. Wall Experiment Station

### certifies

M-NH906

ENVIROSYSTEMS INC 1 LAFAYETTE RD HAMPTON, NH 03842-0000

Laboratory Director: RUSSELL D. FOSTER

for the analysis of NON POTABLE WATER (CHEMISTRY)

### pursuant to 310 CMR 42.00

This certificate supersedes all previous Massachusetts certificates issued to this laboratory. The laboratory is regulated by and shall be responsible for being in compliance with Massachusetts regulations at 310 CMR 42.00.

This certificate is valid only when accompanied by the latest dated Certified Parameter List as issued by the Massachusetts D.E.P. Contact the Division of Environmental Analysis to verify the current certification status of the laboratory.

Certification is no guarantee of the validity of the data. This certification is subject to unannounced laboratory inspections.

Issued:

01 JUL 2017

Expires:

30 JUN 2018

Director, Division of Environmental Analysis

Oscar Q. Parcala

# COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certified Parameter List as of:

01 JUL 2017

M-NH906

ENVIROSYSTEMS INC HAMPTON NH

| NON POTABLE WATER (CHEMISTRY) | Effective<br>Date     | 17 MAY 2017 | Expiration 30.  Date | JUN 2018 |
|-------------------------------|-----------------------|-------------|----------------------|----------|
| Analytes                      |                       |             | Methods              |          |
| ALUMINUM                      |                       |             | EPA 200.8            |          |
| ANTIMONY                      |                       |             | EPA 200.8            |          |
| ARSENIC                       |                       |             | EPA 200.8            |          |
| BERYLLIUM                     |                       |             | EPA 200.8            |          |
| CADMIUM                       |                       |             | EPA 200.8            |          |
| CHROMIUM                      |                       |             | EPA 200.8            |          |
| COBALT                        |                       |             | EPA 200.8            |          |
| COPPER                        |                       |             | EPA 200.8            |          |
| IRON                          |                       |             | EPA 200.8            |          |
| LEAD                          |                       |             | EPA 200.8            |          |
| MANGANESE                     |                       |             | EPA 200.8            |          |
| MERCURY                       |                       |             | EPA 245.7            |          |
| MOLYBDENUM                    |                       |             | EPA 200.8            |          |
| NICKEL                        |                       |             | EPA 200.8            |          |
| SELENIUM                      |                       |             | EPA 200.8            |          |
| SILVER                        | ,                     |             | EPA 200.8            |          |
| THALLIUM                      |                       |             | EPA 200.8            |          |
| VANADIUM                      |                       |             | EPA 200.8            |          |
| ZINC                          |                       |             | EPA 200.8            |          |
| PH .                          |                       |             | SM 4500-H-B          |          |
| SPECIFIC CONDUCTIVITY         |                       |             | SM 2510B             |          |
| ALKALINITY, TOTAL             |                       |             | EPA 310.2            |          |
| CHLORIDE                      |                       |             | SM 4500-CL-C         |          |
| CHLORIDE                      |                       |             | EPA 300.0            |          |
| SULFATE                       |                       |             | EPA 300.0            |          |
| AMMONIA-N                     |                       |             | SM 4500-NH3-B, G     |          |
| NITRATE-N                     |                       |             | SM 4500-NO3-F        |          |
| KJELDAHL-N                    |                       |             | SM 4500-NH3-B, G     |          |
| ORTHOPHOSPHATE                |                       |             | SM 4500-P-E          |          |
| PHOSPHORUS, TOTAL             |                       |             | SM 4500-P-B,E        |          |
| BIOCHEMICAL OXYGEN DEMAND     |                       |             | SM 5210B             |          |
| TOTAL ORGANIC CARBON          |                       |             | SM 5310C             |          |
| CYANIDE, TOTAL                |                       |             | SM 4500-CN-C,E       |          |
| NON-FILTERABLE RESIDUE        |                       |             | SM 2540D             |          |
| OIL AND GREASE                |                       |             | EPA 1664             |          |
| VOLATILE HALOCARBONS          |                       |             | EPA 624              |          |
| VOLATILE AROMATICS            |                       | ě           | EPA 624              |          |
| CHLORDANE                     |                       |             | EPA 608              |          |
| ALDRIN                        |                       |             | EPA 608              |          |
| DIELDRIN                      |                       |             | EPA 608              |          |
| DDD                           |                       |             | EPA 608              |          |
| DDE                           |                       |             | EPA 608              |          |
| DDT                           |                       |             | EPA 608              |          |
| June 9, 2017                  | *= Provisional Certif | fication    | Page 1               | of 2     |

# COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certified Parameter List as of:

01 JUL 2017

M-NH906

**ENVIROSYSTEMS INC** 

HAMPTON NH

| NON POTABLE WATER (CHEMISTRY)     | Effective<br>Date | 17 MAY 2017 | Expiration<br>Date | 30 JUN 2018 |
|-----------------------------------|-------------------|-------------|--------------------|-------------|
| Analytes                          |                   | *           | Methods            |             |
| HEPTACHLOR                        |                   |             | EPA 608            |             |
| HEPTACHLOR EPOXIDE                |                   |             | EPA 608            |             |
| SVOC-ACID EXTRACTABLES            |                   |             | EPA 625            |             |
| SVOC-BASE/NEUTRAL EXTRACTABLES    |                   |             | EPA 625            |             |
| POLYCHLORINATED BIPHENYLS (WATER) |                   |             | EPA 608            |             |

# ACUTE BIOASSAY DATA SUMMARY

|                            |             |                             |                 | ŀ                                      |                  |                |                             |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
|----------------------------|-------------|-----------------------------|-----------------|----------------------------------------|------------------|----------------|-----------------------------|------------|--------------|-------------------------------------------------------------------------------------------|-------------|----------------|------------------------|--------------------|-----------------|------------------------------------------------|--------------|--------------------------|-------------|
| STUDY:                     | 29959       | 99                          |                 | Bri                                    | Brine Shrimp: A- |                | b22h                        |            |              |                                                                                           | "AS         | RECE           | VED" EF                | FLUEN              | T AND C         | "AS RECEIVED" EFFLUENT AND DILUENT CHEMISTRIES | CHEM         | ISTRIES                  |             |
| CLIENT                     | Wooda       | CLIENT: Woodard & Curran    | ran             | TES                                    | T ORG            | ANISM:         | TEST ORGANISM: M. beryllina | lina       |              |                                                                                           | T. Metals   | als TOC        | AMM                    | M TS/TSS           | d ss.           | pH S/C                                         | C SAL        | SALINITY                 | TRC         |
| SAMPLE: Hull WWTF Effluent | Hull W      | WTF Ef                      | fluent          | ORG                                    | SANISM           | SUPPL          | ORGANISM SUPPLIER / BAT     | TCH / AGE: | E<br>E       | 田子                                                                                        | 002         | 8              | 7,00                   | 300/500            | 27.7. 38        | 888                                            |              | 300                      | 20.05       |
| DILUENT: Receiving Water   | T: Recei    | ving Wa                     | ter             | See                                    | Organi           | sm Cult        | ure Shee                    | į,         |              | DIL                                                                                       |             | 00<br>00<br>00 | 010<br># C             | 210/110            |                 | T                                              | <del> </del> | Ť                        | <0-05       |
| SALINIT                    | Y ADJU!     | SALINITY ADJUSTMENT RECORD: | RECO<br>L. ADS. | NT RECORD: 3,500<br>SAL AUS. RW: 7,500 |                  | ML EFFI        | ML EFFLUENT +               | 53.1       |              | G SEA SALTS (A-4682                                                                       | (A-468)     |                | )= 100                 | % ACTUAL           | JAL PEF         | Ш                                              | -1           | ſ                        |             |
| CNO                        | DED         | S                           | SURVIVAL        | AL<br>36                               |                  | DO (mg/L)      | (-)<br>;                    |            | Ω            | į                                                                                         |             | TEMP (°C)      | 2                      | S/C                | S/C (µmhos/cm)  | /cm)                                           |              | SALINITY (ppt)           | (ppt)       |
|                            | NE.         | >                           | <del>5</del> 7  | 40                                     | o                | 74             | 48                          | 0          | 24           | 48                                                                                        | 0           | 24             | 48                     | Omentie<br>Omentie | <sub>0</sub> 24 | 48                                             | 0            | 74                       | 48          |
|                            | ∢           | 02                          | 01              | σ                                      | ō                | 1.0            | 1.0                         | 5          |              | 7.77                                                                                      | 23          | 74             | HZ                     | to the             | 39170           | 39500                                          | 92 \$        | 25                       | 25          |
| LAB                        | æ           | 0)                          | 10              | 0                                      | ó                | ر<br>ن<br>و    | ©<br>•                      |            |              |                                                                                           |             |                |                        |                    |                 | 2490000                                        |              | -752023                  | )           |
| SALT                       | ပ           | 0)                          | 10              | o-                                     | <u>~</u>         | ت<br>د<br>و    | 6.7                         |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
|                            | ۵           | 0)                          | 10              | গ                                      | ô                | ري<br>و        | 9.0                         |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
|                            | A           | 9                           | GE196F5         | ∞                                      | 9,1              | 7.9            | (p. 6)                      | 18.E       | カビで          | 7.82                                                                                      | 2           | 7.7            | 24                     | 38920              | 02101           | 07.HI.H                                        | 2.5          | 2.5                      | 76          |
| W.                         | ω           | 0                           | 0               | 10                                     | ٦.6              | 6.3            | 6.6                         |            |              | 7 - 119                                                                                   |             |                | Secretary<br>Francisco |                    |                 |                                                | prot,        |                          | 7           |
|                            | ပ           | 01                          | d               | Ь                                      | 2                | ر<br>ن         | 2.3                         |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
|                            | ۵           | 01                          | 999P            | ග                                      | Ļ                | 6.7            | 6,5                         |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
|                            | 4           | 01                          | 6               | οĐ                                     | F                | Š              | ψ.o)                        | 1.83       | 1.73         | 187                                                                                       | 23          | 13,            | 24                     | 39230              | 40500           | 1 38 J                                         | 000          | 26                       | 202         |
| 6 25%                      | ω           | 01                          | 10              | ь                                      | laming<br>Laming | Ś              | 6,5                         |            |              |                                                                                           |             |                |                        |                    | 15 percent      | 2                                              |              |                          | 27          |
|                            | ပ           | 10                          | 10              | 10                                     |                  | <u>.</u><br>و: | 0'0                         |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
|                            | Ω           | 10                          | 0]              | 0.0                                    | رس.              | و. ا           | ر<br>ور                     |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
|                            | ∢           | 01                          | 0               | 10                                     | <u></u>          | ج.             | اله . رام                   | 7.83       | 上上           | 1.82                                                                                      | 23          | さ              | 77                     | 39380              | 1000            | S8.01 T                                        | 52           | 2                        | 2           |
| 12 5%                      | മ           | 10                          |                 | ,                                      | <u></u>          | وَ             | 5 Ŋ                         |            |              |                                                                                           |             |                |                        |                    | 1.37.1.057.13   | 2                                              |              |                          | \$ )        |
|                            | ပ           | 01                          | 01              | 10                                     | Lanci            | <br>.S         | 5.0                         |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
| dix Pa                     | D           | 1.0                         | 0               | 10                                     |                  | ナラ             | (0.5                        |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
| DATE                       |             | 9111                        |                 | 91 11                                  |                  | LULIN          | 5                           |            |              |                                                                                           |             |                |                        |                    |                 |                                                |              |                          |             |
| TIME                       |             | 1410                        | 1215            | ************************************** | 0773             | 0700           | 0160                        | (v)        | Elgars, IIII | 11                                                                                        | 5<br>5<br>4 | 75.7           |                        | \$<br>\$<br>6      |                 | 3                                              | 113          | a) us wealth a orgs from | from togeth |
| INITIALS                   |             | 55                          | 38              |                                        | NN               | Min            | 22                          | (          | 100 L        | 1 organisms (n veaner) with no corpses                                                    | C (ms       | ンでなかのこ         | ~ ¥:3 (                | o conpre           | ^               | <b>さぎ</b> か                                    | ος<br>Σ      | stact in data sum town   |             |
|                            | 11 (0045 \$ | Fram 670                    | t               | CARS                                   |                  |                |                             | <b></b>    | - Size/age   | 175/1111   Sire/age varietion observed in all concentrations. Some of the smaller varient | thon ob     | served         | in all c               | oneent             | actions.        | Some                                           | of the       | smalle                   | ר עמילפר    |
| in done                    | um f s      | in doter sum to starts      |                 |                                        |                  |                |                             |            | seem t       | o not b                                                                                   | e eating    | 7.5            |                        |                    |                 |                                                |              |                          |             |

Data Appendix Page 5

# ACUTE BIOASSAY DATA SUMMARY

| STUDY:                     | 29958   | 00       |          | Brin     | e Shrim        | Brine Shrimp: A- $4729$    | 729          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        |                |       |       |                 |             |
|----------------------------|---------|----------|----------|----------|----------------|----------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|----|-----------|----|--------|----------------|-------|-------|-----------------|-------------|
| CLIENT: Woodard & Curran   | Wooda   | rd & Cui | ran      | TES      | TEST ORGANISM: | NISM:                      | M. beryllina | lina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |         |    |           |    |        |                |       |       |                 |             |
| SAMPLE: Hull WWTF Effluent | Hull W  | WTF Ef   | fluent   | ORG      | ANISM          | ORGANISM SUPPLIER / BA     | IER / BA     | ATCH / AGE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ij.<br>ij. |         |    |           |    |        |                |       |       |                 |             |
| DILUENT: Receiving Water   | : Recei | ving Wa  | ter      | See      | Organis        | See Organism Culture Sheet | re Sheet     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        |                |       |       |                 |             |
|                            |         | S        | SURVIVAL | AL.      |                | DO (mg/L)                  | (1)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (NS) Ha    |         | ļ- | TEMP (°C) | 7. | S/S    | S/C (umbos/cm) | (cm)  | Ü     | SAI INITY (nnt) | (2004)      |
| CONC                       | REP     | 0        | 24       | 48       | 0              | 24                         | 48           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24         | 48      | 0  | 24        | 48 | 0      | 24             | 48    | 0     | 24              | (PPt)<br>48 |
|                            | А       | 01       | 01       | .9       | <i>و</i><br>ن  | <u>-</u><br>ق              | 9.9          | 7.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.67       | 791     | 23 | 74        | 74 | 391,00 | 40660          | 11990 | 25    | 7 (             | 77          |
| 750/                       | В       | 01       | 0)       | 9        | 7.8            | و د                        | 9.9          | P 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |         |    |           |    |        |                |       | )     | 97              | 1           |
| 0/07                       | ပ       | 01       | 8        | ŗ        | 1.8            | ه ف                        | 6.6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        |                |       | 200.2 |                 |             |
|                            | D       | 0/       | 01       | 01       | 7.8            | 0.0                        | 6.6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        |                |       |       |                 |             |
|                            | 4       | 0)       | 10       | 16       | 7.8            | ر<br>ف                     | 6.6          | - 68.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.90       | 7.99    | 23 | h7        | 74 | 39550  | ahsoh          | 41850 | 25    | 7.6             | 77          |
| 20%                        | В       | 0.1      | =        | 10       | 2.8            | <u>۔</u><br>ف              | 9.9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        | 224            |       |       |                 | - <br>      |
| ?                          | ပ       | 0)       |          | =        | 1.8            | <u>-</u><br>ڧ              | 9.9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | tra con |    |           |    |        |                |       |       |                 |             |
|                            | D       | 0)       | Ь        | 6        | 28             | 6.0                        | 9.9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        |                |       |       |                 |             |
|                            | 4       | 0)       | 0        | 10       | 87             | 0,0                        | 6.5          | 7.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.9.7      | 8.09    | 23 | h2        | 74 | 39410  | 09h0h          | H1G30 | 25    | 26              | 27          |
| 100%                       | М       | 01       | 01       | 10       | 7,8            | 1. a                       | F.9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        |                | 200   |       |                 |             |
|                            | ပ       | u0       | 0)       | 0        | 7.8            | 1:0)                       | (e.)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    | 78.52  |                |       |       |                 |             |
|                            | D       | 0/       | 0        | 4        | 7.8            | Ö. Ö                       | b.6          | A Company of the Comp |            |         |    |           |    |        |                |       |       |                 |             |
| DATE                       |         | 11/10    |          | 71/81/11 | Lipupa         | u)/ci/ii                   | 81/11        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        |                |       |       |                 |             |
| TIME                       |         | 0h1      | 17.15    | 1215     | 1226           | 0750                       | 0110         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        |                |       |       |                 |             |
| INITIALS                   |         | KB       | CB.      | GRS      | MM             | MW                         | CFS          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |         |    |           |    |        |                |       |       |                 |             |

Every 1,120117 50% B+C 11 orgs from start in dana sum + stats

### **CETIS Summary Report**

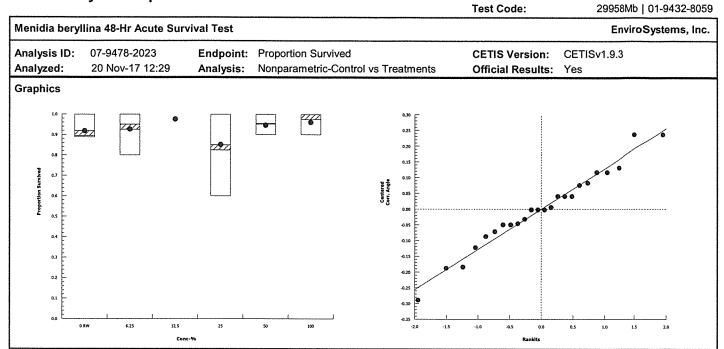
Report Date:

20 Nov-17 12:29 (p 1 of 1)

Test Code: 29958Mb | 01-9432-8059

| Menidia beryl                                         | lina 48-Hr Acute                                                 | Survi | val Test                                       |                                                                |          |             |      |      |               |            |                                            | EnviroSy | stems, Inc. |
|-------------------------------------------------------|------------------------------------------------------------------|-------|------------------------------------------------|----------------------------------------------------------------|----------|-------------|------|------|---------------|------------|--------------------------------------------|----------|-------------|
| Batch ID:<br>Start Date:<br>Ending Date:<br>Duration: | 11-0636-9594<br>16 Nov-17 14:10<br>18 Nov-17 12:10<br>46h        | -     | Test Type:<br>Protocol:<br>Species:<br>Source: | Survival<br>EPA/821/R-02-<br>Menidia beryllir<br>ARO - Aquatic | na `´´   | rganisms, I | NH   |      |               | Rec        | a Bordonaro<br>ceiving Wate<br>neric comme |          |             |
| •                                                     | 02-9791-7691<br>15 Nov-17 08:00<br>15 Nov-17 08:30<br>30h (5 °C) |       | Code:<br>Material:<br>Source:<br>Station:      | 29958<br>WWTP, Munici<br>Hull MA WWTF<br>MA0101231             | -        | ent Plant   |      | Clie | ent:<br>ject: |            | odard & Curi                               | •        | liance Test |
| Multiple Com                                          | parison Summa                                                    | ıry   |                                                |                                                                |          |             |      |      |               |            |                                            |          |             |
| Analysis ID                                           | Endpoint                                                         |       | Comp                                           | arison Method                                                  |          |             | NOE  | L    | LOE           | _          | TOEL                                       | TU       | PMSD /      |
| 07-9478-2023                                          | Proportion Surv                                                  | ived  | Steel                                          | Many-One Rank                                                  | Sum Test |             | 100  |      | > 100         |            | n/a                                        | 1        | 19.2%       |
| Proportion Su                                         | ırvived Summaı                                                   | ry    |                                                |                                                                |          |             |      |      |               |            |                                            |          |             |
| Conc-%                                                | Code                                                             | Cour  | it Mean                                        | 95% LCL                                                        | 95% UCL  | Min         | Max  |      | Std E         | irr        | Std Dev                                    | CV%      | %Effect     |
| 0                                                     | LS                                                               | 4     | 0.950                                          | 0.858                                                          | 1.000    | 0.900       | 1.00 | 0    | 0.029         | )          | 0.058                                      | 6.08%    | 0.00%       |
| 0                                                     | RW                                                               | 4     | 0.919                                          | 0.834                                                          | 1.000    | 0.889       | 1.00 | 0    | 0.027         | •          | 0.054                                      | 5.87%    | 3.22%       |
| 6.25                                                  |                                                                  | 4     | 0.925                                          | 0.773                                                          | 1.000    | 0.800       | 1.00 | 0    | 0.048         | }          | 0.096                                      | 10.35%   | 2.63%       |
| 12.5                                                  |                                                                  | 4     | 1.000                                          | 1.000                                                          | 1.000    | 1.000       | 1.00 | 0    | 0.000         | )          | 0.000                                      | 0.00%    | -5.26%      |
| 25                                                    |                                                                  | 4     | 0.825                                          | 0.497                                                          | 1.000    | 0.600       | 1.00 | 0    | 0.103         | 3          | 0.206                                      | 24.99%   | 13.16%      |
| 50                                                    |                                                                  | 4     | 0.952                                          | 0.864                                                          | 1.000    | 0.900       | 1.00 | 0    | 0.028         | }          | 0.055                                      | 5.80%    | -0.24%      |
| 100                                                   |                                                                  | 4     | 0.975                                          | 0.895                                                          | 1.000    | 0.900       | 1.00 | 0    | 0.025         | 5          | 0.050                                      | 5.13%    | -2.63%      |
| Proportion Su                                         | ırvived Detail                                                   |       |                                                |                                                                |          |             |      |      |               | ********** |                                            |          |             |
| Conc-%                                                | Code                                                             | Rep ' | Rep 2                                          | Rep 3                                                          | Rep 4    |             |      |      |               |            |                                            |          |             |
| 0                                                     | LS                                                               | 0.900 | 1.000                                          | 0.900                                                          | 1.000    |             |      |      |               |            |                                            |          |             |
| 0                                                     | RW                                                               | 0.889 | 1.000                                          | 0.900                                                          | 0.889    |             |      |      |               |            |                                            |          |             |
| 6.25                                                  |                                                                  | 0.800 | 0.900                                          | 1.000                                                          | 1.000    |             |      |      |               |            |                                            |          |             |
| 12.5                                                  |                                                                  | 1.000 | 1.000                                          | 1.000                                                          | 1.000    |             |      |      |               |            |                                            |          |             |
| 25                                                    |                                                                  | 0.600 | 1.000                                          | 0.700                                                          | 1.000    |             |      |      |               |            |                                            |          |             |
| 50                                                    |                                                                  | 1.000 | 0.909                                          | 1.000                                                          | 0.900    |             |      |      |               |            |                                            |          |             |
| 100                                                   |                                                                  | 1.000 | 1.000                                          | 1.000                                                          | 0.900    |             |      |      |               |            |                                            |          |             |

### **CETIS Analytical Report**


Report Date: Test Code: 20 Nov-17 12:29 (p 1 of 2)

29958Mb | 01-9432-8059

|                    |                                         |             |            |                                       |           |      |           | 1630                                    | Code.      | <u>~</u>       | aagoivin I o                            | 1 0 102 000  |
|--------------------|-----------------------------------------|-------------|------------|---------------------------------------|-----------|------|-----------|-----------------------------------------|------------|----------------|-----------------------------------------|--------------|
| Menidia beryllina  | 48-Hr Acute                             | Surviva     | l Test     |                                       |           |      |           |                                         |            |                | EnviroSy                                | stems, Inc.  |
| Analysis ID: 07    | -9478-2023                              | E           | ndpoint:   | Proportion Sur                        | vived     |      |           | CET                                     | IS Versior | : CETISv       | 1.9.3                                   |              |
| Analyzed: 20       | Nov-17 12:2                             | 29 <b>A</b> | nalysis:   | Nonparametric                         | -Control  | vs T | reatments | Offic                                   | ial Result | s: Yes         |                                         |              |
| Sample ID: 02-     | 9791-7691                               | c           | ode:       | 29958                                 |           |      |           | Clie                                    | nt: W      | oodard & Cu    | rran, Inc.                              |              |
| Sample Date: 15    | Nov-17 08:00                            | D <b>N</b>  | laterial:  | WWTP, Munic                           | ipal Trea | tme  | nt Plant  | Proj                                    | ect: Fo    | urth Quarter   | WET Com                                 | oliance Test |
| Receipt Date: 15   | Nov-17 08:38                            | 8 <b>S</b>  | ource:     | Hull MA WWT                           | F         |      |           |                                         |            |                |                                         |              |
| Sample Age: 30h    | (5 °C)                                  | S           | tation:    | MA0101231                             |           |      |           |                                         |            |                |                                         |              |
| Data Transform     |                                         | Alt Hy      | p          |                                       |           |      |           | NOEL                                    | LOEL       | TOEL           | TU                                      | PMSD         |
| Angular (Corrected | i)                                      | C > T       |            |                                       |           |      |           | 100                                     | > 100      | n/a            | 1                                       | 19.20%       |
| Steel Many-One F   | Rank Sum To                             | est         |            |                                       |           |      |           |                                         |            |                |                                         |              |
| Control vs         | Conc-%                                  | ·····       | Test       | Stat Critical                         | Ties      | DF   | P-Type    | P-Value                                 | Decisio    | n(α:5%)        |                                         |              |
| Receiving Water    | 6.25                                    |             | 19.5       | 10                                    | 2         | 6    | Asymp     | 0.9315                                  | •          | nificant Effec |                                         |              |
|                    | 12.5                                    |             | 24         | 10                                    | 1         | 6    | Asymp     | 0.9989                                  | _          | nificant Effec |                                         |              |
|                    | 25                                      |             | 17         | 10                                    | 1         | 6    | Asymp     | 0.7334                                  | •          | nificant Effec |                                         |              |
|                    | 50                                      |             | 22.5       | 10                                    | 2         | 6    | Asymp     | 0.9944                                  | _          | nificant Effec |                                         |              |
|                    | 100                                     |             | 23         | 10                                    | 2         | 6    | Asymp     | 0.9966                                  | Non-Sig    | nificant Effec | t                                       |              |
| ANOVA Table        |                                         |             |            |                                       |           |      |           |                                         |            |                |                                         |              |
| Source             | Sum Squ                                 | ares        | Mean       | Square                                | DF        |      | F Stat    | P-Value                                 | Decisio    |                | ······                                  |              |
| Between            | 0.137709                                |             | 0.027      |                                       | 5         |      | 1.37      | 0.2831                                  | Non-Sig    | nificant Effec | t                                       |              |
| Error              | 0.362983                                |             | 0.020      | 1657                                  | 18        |      | •••       |                                         |            |                |                                         |              |
| Total              | 0.500693                                |             |            |                                       | 23        |      |           | *************************************** |            |                | *************************************** |              |
| Distributional Tes | sts                                     |             |            |                                       |           |      |           |                                         |            |                |                                         |              |
| Attribute          | Test                                    |             |            |                                       | Test S    | tat  | Critical  | P-Value                                 | Decisio    | n(α:1%)        |                                         |              |
| Variances          | Bartlett Ed                             | quality of  | Variance 1 | est                                   | 23.4      |      | 15.1      | 2.8E-04                                 | Unequal    | Variances      |                                         | ż            |
| Distribution       | Shapiro-W                               | Vilk W No   | rmality Te | st                                    | 0.978     |      | 0.884     | 0.8479                                  | Normal I   | Distribution   |                                         |              |
| Proportion Surviv  | red Summai                              | гу          |            |                                       |           |      |           |                                         |            |                |                                         |              |
| Conc-%             | Code                                    | Count       | Mean       | 95% LCL                               | 95% U     | CL   | Median    | Min                                     | Max        | Std Err        | CV%                                     | %Effect      |
| 0                  | RW                                      | 4           | 0.919      | 0.834                                 | 1.000     |      | 0.894     | 0.889                                   | 1.000      | 0.027          | 5.87%                                   | 0.00%        |
| 6.25               |                                         | 4           | 0.925      | 0.773                                 | 1.000     |      | 0.950     | 0.800                                   | 1.000      | 0.048          | 10.35%                                  | -0.60%       |
| 12.5               |                                         | 4           | 1.000      | 1.000                                 | 1.000     |      | 1.000     | 1.000                                   | 1.000      | 0.000          | 0.00%                                   | -8.76%       |
| 25                 |                                         | 4           | 0.825      | 0.497                                 | 1.000     |      | 0.850     | 0.600                                   | 1.000      | 0.103          | 24.99%                                  | 10.27%       |
| 50                 |                                         | 4           | 0.952      | 0.864                                 | 1.000     |      | 0.955     | 0.900                                   | 1.000      | 0.028          | 5.80%                                   | -3.57%       |
| 100                | *************************************** | 4           | 0.975      | 0.895                                 | 1.000     |      | 1.000     | 0.900                                   | 1.000      | 0.025          | 5.13%                                   | -6.04%       |
| Angular (Correcte  | ed) Transfor                            | med Sur     | nmary      |                                       |           |      |           |                                         |            |                |                                         |              |
| Conc-%             | Code                                    | Count       | Mean       | · · · · · · · · · · · · · · · · · · · |           | CL   | ~~~       | Min                                     | Max        | Std Err        | CV%                                     | %Effect      |
| 0                  | RW                                      | 4           | 1.28       | 1.14                                  | 1.42      |      | 1.24      | 1.23                                    | 1.41       | 0.044          | 6.87%                                   | 0.00%        |
| 6.25               |                                         | 4           | 1.3        | 1.06                                  | 1.53      |      | 1.33      | 1.11                                    | 1.41       | 0.0735         | 11.35%                                  | -1.12%       |
| 12.5               |                                         | 4           | 1.41       | 1.41                                  | 1.42      |      | 1.41      | 1.41                                    | 1.42       | 0.00187        | 0.26%                                   | -10.39%      |
| 25                 |                                         | 4           | 1.18       | 0.735                                 | 1.62      |      | 1.2       | 0.886                                   | 1.41       | 0.138          | 23.54%                                  | 8.23%        |
| 50                 |                                         | 4           | 1.34       | 1.19                                  | 1.48      |      | 1.34      | 1.25                                    | 1.42       | 0.046          | 6.89%                                   | -4.33%       |
| 100                |                                         | 4           | 1.37       | 1.24                                  | 1.5       |      | 1.41      | 1.25                                    | 1.41       | 0.0407         | 5.94%                                   | -7.07%       |

Report Date:

20 Nov-17 12:29 (p 2 of 2)



**STUDY:** 29958 **CLIENT:** Hull PROJECT:

**ASSAY: MB48AD** SPECIES: M. beryllina

TASK: Wet Weight Data - Balance Output File BALANCE: Ohaus Discovery Balance Model DV215CD Serial #: 1124024313

| Date / Intials:<br>Rep | 11/16/17 | MW    | MM  |
|------------------------|----------|-------|-----|
| 1                      |          | 0.002 | 96  |
| 2                      |          | 0.000 |     |
| 3                      |          | 0.001 |     |
| 4                      |          | 0.000 |     |
| 5                      |          | 0.002 |     |
| 6                      |          | 0.001 |     |
| 7                      |          | 0.003 | 05  |
| 8                      |          | 0.001 | 07  |
| 9                      |          | 0.000 | 67  |
| 10                     |          | 0.000 | 75  |
| 11                     |          | 0.001 | 54  |
| 12                     |          | 0.000 | 21  |
| 13                     |          | 0.000 | 144 |
| 14                     |          | 0.000 | 76  |
| 15                     |          | 0.000 | 81  |
| 16                     |          | 0.001 | 54  |
| 17                     |          | 0.001 | 12  |
| 18                     |          | 0.000 | 96  |
| 19                     |          | 0.000 | 64  |
| 20                     |          |       |     |
| Mean Weight (g):       |          | 0.001 | 21  |
| Test Volume (L):       |          | (     | 0.2 |
| Loading Rate(g/L):     |          | 0.060 | 61  |



# Aquatic Research Organisms

### DATA SHEET

| I.   | Organism History                                   |
|------|----------------------------------------------------|
|      | SpeciesMENIDIA LEZY//WA                            |
|      | Source: Lab reared Hatchery reared Field collected |
|      | Hatch date Receipt date                            |
|      | Lot number 110217MR Strain                         |
|      | Brood origination                                  |
| II.  | Water Quality                                      |
|      | Temperature 25 °C Salinity ~28 ppt D.O. ppm        |
|      | pH 7.8 su Hardnessppm Alkalinityppm                |
| III. | Culture Conditions                                 |
|      | Freshwater Other                                   |
|      | Recirculating Flow through Static renewal          |
|      | DIET: Flake food Phytoplankton Trout chow          |
|      | Artemia Rotifers YCT Other ENCAPShiemp Die 7       |
|      | Prophylactic treatments:                           |
|      | Comments:                                          |
|      |                                                    |
| IV.  | Shipping Information                               |
|      | Client:# of Organisms700 +                         |
|      | Carrier: Date shipped                              |
|      | Biologist: Hart Toxengord                          |

PO BOX 1271 HAMPTON NH 03843-1271 (603) 926-1650 <u>AROFISH@AOL.COM</u>

|                   | 1 |
|-------------------|---|
| لسا               | 1 |
| 巡                 | 1 |
| 77                | 1 |
| 낖                 |   |
| $\supset$         | 1 |
|                   | 1 |
| ഗ                 | 1 |
| ≈                 | ı |
| ш.                | J |
| Ш                 | 1 |
| E                 | 1 |
|                   | ı |
|                   | i |
| 5                 | 1 |
| ≝<br>E            | 1 |
|                   | 1 |
| 늣                 | 1 |
| ( )               | 1 |
| _                 | 1 |
| <u>ي</u>          | ł |
| $\overline{\sim}$ | ı |
| Щ                 | 1 |
| $\overline{a}$    | i |
| $\simeq$          | 1 |
| O                 | 1 |
| HΠ                | 1 |
| ==                | 1 |
| Ľ                 | 1 |

| <b>s</b> тиру: 29998       | ∞                | CLIENT: Woodar<br>MA WWTF | CLIENT: Woodard & Curran - Hull,<br>MA WWTF |
|----------------------------|------------------|---------------------------|---------------------------------------------|
|                            | Exposure (Hours) | (Hours)                   |                                             |
|                            | 0                | 24                        | 48                                          |
| Water Quality<br>Station # | -                |                           |                                             |
| Initials / Date            | MW WILLIT        | CHPIII WM                 | MW IIII7117 CFS IIII8117                    |

| ENTS                     |            |            |            |            |             |             |                  |
|--------------------------|------------|------------|------------|------------|-------------|-------------|------------------|
| ation #2 COMMENTS        |            |            |            |            |             |             |                  |
| Water Quality Station #2 | DO meter # | DO probe # | pH meter # | pH probe # | S/C meter # | S/C probe # | Salinity meter # |
| Station #1               | 54         | 9.5        | 1097       | 149        | 75130D      |             | <i>→</i>         |
| Water Quality Station #1 | DO meter # | DO probe # | pH meter # | pH probe # | S/C meter # | S/C probe # | Salinity meter # |

| SZ      |
|---------|
| ō       |
| E       |
|         |
| $\Box$  |
| F<br>F  |
| 2       |
| Q       |
| Ē       |
| ⋦       |
| ¥       |
| PREP    |
| Ϋ́      |
| <u></u> |

| Diluent:<br>Receiving Water<br>(RW) | Day: 0<br>Sample: €, ▷, | Eo = 27.0°C<br>Do = 24.4°C |
|-------------------------------------|-------------------------|----------------------------|
| Concentration %                     | Vol. Eff.(mls)          | Final Vol.(mls)            |
| Lab Salt                            | 0                       | 800 mL                     |
| RW                                  | 0                       | -                          |
| 6.25%                               | 50                      |                            |
| 12.5%                               | 001                     |                            |
| 25%                                 | 200                     |                            |
| 20%                                 | 400                     |                            |
| 100%                                | 800                     | <b>-&gt;</b>               |
| INITIALS:                           | ¥                       |                            |
| TIME:                               | 135                     |                            |
| LI P                                | 11/10/11                |                            |

Report No: 29958 SDG:

Project: Hull

Sample ID: Effluent Start Matrix: Water

Sampled: 11/15/17 0800

| Parameter              |           | Result | Quant<br>Limit | Units     | Date<br>Prepared | Date of<br>Analysis | INIT/Method/Reference |
|------------------------|-----------|--------|----------------|-----------|------------------|---------------------|-----------------------|
| Total solids           | 29958-006 | 12000  | 100            | mg/L      | 11/17/17 1405    | 11/21/17 0940       | CA /SM 2540B          |
| Total suspended solids | 29958-005 | 14     | 2              | mg/L      | 11/16/17 1115    | 11/17/17 1035       | CA /SM 2540D          |
| Total organic carbon   | 29958-003 | 4.7    | 0.4            | mg/L      | 11/22/17         | 11/22/17            | BS /SM 5310 C         |
| Ammonia-N              | 29958-004 | 0.17   | 0.1            | mg/L as N | 11/24/17 1100    | 11/24/17 1230       | BS /SM 4500-NH3 G     |
| Aluminum, total        | 29958-002 | 0.035  | 0.02           | mg/L      | 11/29/17 0915    | 11/29/17 2212       | JLH/EPA 200.8         |
| Cadmium, total         | 29958-002 | ND     | 0.0005         | mg/L      | 11/29/17 0915    | 11/29/17 2212       | JLH/EPA 200.8         |
| Calcium, total         | 29958-002 | 162    | 0.1            | mg/L      | 11/29/17 0915    | 11/29/17 2212       | JLH/EPA 200.8         |
| Chromium, total        | 29958-002 | ND     | 0.002          | mg/L      | 11/29/17 0915    | 11/29/17 2212       | JLH/EPA 200.8         |
| Copper, total          | 29958-002 | 0.011  | 0.0005         | mg/L      | 11/29/17 0915    | 11/29/17 2212       | JLH/EPA 200.8         |
| Lead, total            | 29958-002 | ND     | 0.0005         | mg/L      | 11/29/17 0915    | 11/29/17 2212       | JLH/EPA 200.8         |
| Magnesium, total       | 29958-002 | 365    | 0.1            | mg/L      | 11/29/17 0915    | 11/29/17 2212       | JLH/EPA 200.8         |
| Nickel, total          | 29958-002 | ND     | 0.002          | mg/L      | 11/29/17 0915    | 11/29/17 2212       | JLH/EPA 200.8         |
| Zinc, total            | 29958-002 | 0.058  | 0.002          | mg/L      | 11/29/17 0915    | 11/29/17 2212       | JLH/EPA 200.8         |

Sample ID: Receiving Water Start

Matrix: Water

Sampled: 11/15/17 0600

| Parameter              |           | Result | Quant<br>Limit | Units     | Date<br>Prepared | Date of<br>Analysis | INIT/Method/Reference |
|------------------------|-----------|--------|----------------|-----------|------------------|---------------------|-----------------------|
| Total solids           | 29958-012 | 36000  | 100            | mg/L      | 11/17/17 1405    | 11/21/17 0940       | CA /SM 2540B          |
| Total suspended solids | 29958-011 | 4.8    | 2              | mg/L      | 11/16/17 1115    | 11/17/17 1035       | CA /SM 2540D          |
| Total organic carbon   | 29958-009 | 2      | 2              | mg/L      | 12/10/17         | 12/10/17            | BS /SM 5310 C         |
| Ammonia-N              | 29958-010 | ND     | 0.1            | mg/L as N | 11/24/17 1100    | 11/24/17 1230       | BS /SM 4500-NH3 G     |
| Aluminum, total        | 29958-008 | 0.075  | 0.02           | mg/L      | 11/29/17 0915    | 11/29/17 2218       | JLH/EPA 200.8         |
| Cadmium, total         | 29958-008 | ND     | 0.0005         | mg/L      | 11/29/17 0915    | 11/29/17 2218       | JLH/EPA 200.8         |
| Calcium, total         | 29958-008 | 363    | 0.1            | mg/L      | 11/29/17 0915    | 11/29/17 2218       | JLH/EPA 200.8         |
| Chromium, total        | 29958-008 | ND     | 0.002          | mg/L      | 11/29/17 0915    | 11/29/17 2218       | JLH/EPA 200.8         |
| Copper, total          | 29958-008 | 0.0011 | 0.0005         | mg/L      | 11/29/17 0915    | 11/29/17 2218       | JLH/EPA 200.8         |
| Lead, total            | 29958-008 | ND     | 0.0005         | mg/L      | 11/29/17 0915    | 11/29/17 2218       | JLH/EPA 200.8         |
| Magnesium, total       | 29958-008 | 1080   | 0.1            | mg/L      | 11/29/17 0915    | 11/29/17 2218       | JLH/EPA 200.8         |
| Nickel, total          | 29958-008 | ND     | 0.002          | mg/L      | 11/29/17 0915    | 11/29/17 2218       | JLH/EPA 200.8         |
| Zinc, total            | 29958-008 | 0.0026 | 0.002          | mg/L      | 11/29/17 0915    | 11/29/17 2218       | JLH/EPA 200.8         |

Notes:

ND = Not Detected

**ESI** 

EnviroSystems, Inc. P.O. Box 778 Hampton, NH 03842-0778 603-926-3345 fax 603-926-3521 www.envirosystems.com

### SAMPLE RECEIPT AND CONDITION DOCUMENTATION

Page 1 of 1

| STUDY NO:<br>SDG No:<br>Project:   | 29958<br>Hull<br>Hull |                                                        |               |
|------------------------------------|-----------------------|--------------------------------------------------------|---------------|
| Delivered via:                     | ESI                   |                                                        |               |
| Date and Time Received:            | 11/15/17 0838         | Date and TIme Logged into Lab:                         | 11/15/17 1538 |
| Received By:                       | MG                    | Logged into Lab by:                                    | MS MS         |
| Air bill / Way bill:               | No                    | Air bill included in folder if received?               | NA            |
| Cooler on ice/packs:               | Yes                   | Custody Seals present?                                 | NA            |
| Cooler Blank Temp (C) at arriva    | l: 5.2 C              | Custody Seals intact?                                  | NA            |
| Number of COC Pages:               | 1                     |                                                        |               |
| COC Serial Number(s):              | A1015534              |                                                        |               |
| COC Complete:                      |                       | Does the info on the COC match the samples?            | Yes           |
| Sampled Date                       | : Yes                 | Were samples received within holding time?             | Yes           |
| Field ID complete                  | : Yes                 | Were all samples properly labeled?                     | Yes           |
| Sampled Time                       | Yes                   | Were proper sample containers used?                    | Yes           |
| Analysis request                   | Yes                   | Were samples received intact? (none broken or leaking) | Yes           |
| COC Signed and dated:              | Yes                   | Were sample volumes sufficient for requested analysis? | Yes           |
| Were all samples received?         | Yes                   | Were VOC vials free of headspace?                      | NA            |
| Client notification/authorization: | Not required          | pH Test strip ID number:                               | A-4734        |

|                       |           |    |                                          | Bottle   | Req'd  | Verified |
|-----------------------|-----------|----|------------------------------------------|----------|--------|----------|
| Field ID              | Lab ID    | Mx | Analysis Requested                       |          | Pres'n | Pres'n   |
| Effluent Start        | Lab ID    | W  | MB48AD StartSample                       | 1x3750 P | 4 C    |          |
| Effluent Start        | 29958-002 | W  | Total Metals Cd,Cr,Ni,Pb,Cu,Zn,Al,Ca,Mg; | 250 P    | HNO3   | Yes      |
| Effluent Start        | 29958-003 | W  | TOC                                      | 1x40 G   | H2SO4  | Yes      |
| Effluent Start        | 29958-004 | W  | NH3;                                     | 125 P    | H2SO4  | Yes      |
| Effluent Start        | 29958-005 | W  | TSS                                      | 1000 P   | 4 C    |          |
| Effluent Start        | 29958-006 | W  | TS                                       | 250 P    | 4 C    |          |
| Receiving Water Start | 29958-007 | W  | MB48AD StartDiluent                      | 2x3750 P | 4 C    |          |
| Receiving Water Start | 29958-008 | W  | Total Metals Cd,Cr,Ni,Pb,Cu,Zn,Al,Ca,Mg; | 250 P    | HNO3   | Yes      |
| Receiving Water Start | 29958-009 | W  | TOC                                      | 1x40 G   | H2SO4  | Yes      |
| Receiving Water Start | 29958-010 | W  | NH3;                                     | 125 P    | H2SO4  | Yes      |
| Receiving Water Start | 29958-011 | W  | TSS                                      | 1000 P   | 4 C    |          |
| Receiving Water Start | 29958-012 | W  | TS                                       | 250 P    | 4 C    |          |
|                       |           |    |                                          |          |        |          |

### Notes and qualifications:

| See COC | The state of the s | <br>, 101-11111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |  |

ESI Job No: 20958

EnviroSystems, Inc. 1 Lafayette Road Hampton, NH 03842

国 S J

Voice: 603-926-3345 FAX: 603-926-3521

Total Metals Cd, Cr, Ni, Pb, Cu, Zn, Al, Ca, Mg; Total Metals Cd,Cr,Ni,Pb,Cu,Zn,Al,Ca,Mg; Quote No:41181 Time: MB48AD StartSample MB48AD StartDiluent Filter Analyses Requested\
N=Not needed Special Instructions: 000 P.O.No: 1 Date: // Task: Date: NH3; NH3; 700 TSS 100 TSS 73 13 F=Done in field L=Lab to do Aram Varjabedian Z z Z z z z Z z z z z z Hull WWTF Matrix S=Solid P0036 W=Water Water H2S04 H2S04 H2S04 H2S04 HN03 Field Preser-vation HN03 Project Manager: Δ Ω Received at Lab By: 4 C 4 0 4 0 4 C Project Number: Project Name: Received By: Type (P/G/T) email: മ ۵. ۵. თ ۵. ۵. ۵. ۵. ۵. Φ CHAIN OF CUSTODY DOCUMENTATION Container Size (mL) ( 8138 Am 3750 1000 3750 1000 250 125 250 125 250 250 6 5 S or com-posite (G/C) Address: 1111 Nantasket Avenue Date: 1/10 /17 Time: P Time: 9 J B U 9  $\mathcal{P}$ S Sampled Grab  $\mathcal{U}$ C Contact: Aram Varjabedian Ġ, B Address: Hull, MA 02045 B B a B B B 781-925-3056 B æ 6 F 11/5/17 12/11 \* 11/2/11/C /M 11/2/11/0 Sampled 11/4-15/17/8A-84 18-18/17/81-4/11 18-18/17 8/Est 1/14-15/17 8#8A 114-15/17 8#84 1414-15/17 8 £ 8# Time Date: Date Sampled 11/21/11 cilsi/ii L1/S1/11 Fax: 009 Receiving Water Start 011 Receiving Water Start 012 Receiving Water Start 007 Receiving Water Start 008 Receiving Water Start 010 Receiving Water Start Aram Varjabedian Aram Varjabedian 781-925-0906 (must agree with 006 Effluent Start Your Field ID 002 Effluent Start 003 Effluent Start 004 Effluent Start 005 Effluent Start 001 Effluent Starf container) 물 Relinquished By: Relinquished By: Invoice to: Lab Number Report to: (assigned by lab) Client: Protocol Voice:

Comments: 52°C

ERR

COC Number: A1015534

Data Appendix Page 15

οę

Page

Nov 2017

Sample Delivery Group No:

Assay Review Checklist

|           | 710      | and treatest cliecklist  |  |
|-----------|----------|--------------------------|--|
| DATE IN:  | 11/26/17 | <b>STUDY#:</b> 29958     |  |
| DATE DUE: | 12/07/17 | CLIENT: Woodard + Curran |  |
|           |          | PROJECT: Hull            |  |
|           |          | ASSAY: MB48AD            |  |

| Project Paperwork Check for Completeness |          |          |          |  |  |  |
|------------------------------------------|----------|----------|----------|--|--|--|
|                                          | Date     | Initials |          |  |  |  |
| Day 0                                    | 11/16/17 | KB       | Comments |  |  |  |
| Day 1                                    | Illa la  | CFS      |          |  |  |  |
| Day 2                                    | 11/18/17 | GRS      |          |  |  |  |
| Day 3                                    |          |          |          |  |  |  |
| Day 4                                    |          |          |          |  |  |  |
| Day 5                                    |          |          |          |  |  |  |
| Day 6                                    |          |          |          |  |  |  |
| Day 7                                    |          |          |          |  |  |  |
| Day 8                                    |          |          |          |  |  |  |

| Analyst Data Review                                 | 1                                                | ate                                              | In      | itials                     | Comments |
|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------|----------------------------|----------|
| Chains of Custody Complete                          |                                                  | 11/18/17                                         |         | S                          | Oommens  |
| Sample Receipt Complete                             | 1                                                | 1                                                | GI      | $\stackrel{\circ}{\vdash}$ |          |
| Organism Culture Sheet(s)                           | ╁──                                              | <del> </del>                                     | ╫─      |                            |          |
| Bench Sheets Complete (dates, times, initials, etc) | $\vdash$                                         | <del> </del>                                     | -       |                            |          |
| Water Quality Data Complete                         | <del>                                     </del> | <del> </del>                                     |         |                            |          |
| TRC Values & Bottle Numbers                         | $\vdash$                                         | <del>                                     </del> |         |                            |          |
| Daphnid Calculations Complete                       | N                                                | Λ                                                | N 1     |                            |          |
| Weights Reported                                    | <del>                                     </del> |                                                  | N       |                            |          |
| Assay Acceptability Review                          | 11/18                                            |                                                  | GR<br>J | <del></del>                |          |

| Technical Report Review          | Date     | Initials                              | Commont                    |
|----------------------------------|----------|---------------------------------------|----------------------------|
| Statistical Analysis Complete    |          |                                       | Comments                   |
| Statistical Analysis Reviewed    | 11/20/17 | UB<br>AK                              |                            |
| Data Acceptability Review        | 11/20/17 | · · · · · · · · · · · · · · · · · · · | Mb-RW ATO only 9 orgs from |
| Supporting Chemistry Report      | 12/12/17 | UB                                    | -12.57 0.+501 0+( 1) 100 C |
| Draft Report                     | 11/2/17  | UB                                    | from start                 |
| QA Audit/Review Complete         | 14172111 | - 60                                  |                            |
| Final Report Reviewed            | 11/29/17 | AK                                    |                            |
| Final Report Printed - PDF       | 12/12/17 | B                                     |                            |
| Executive Summary / Chems Sent   |          |                                       |                            |
| Report E-mailed / Faxed          | 12/12/17 | 10                                    |                            |
| Report Logged Out / Invoice Sent | 1211211  | 1/0                                   |                            |
| Report Scanned to Archive        | 111      | 7                                     |                            |

P:\GENERAL PROJECTS\FORMS\LABFORMS\\$ Assay Review Checklist.wpd